B.sc math(H) part3 paper6 Toplc:Direct product of two group Dr hari kant singh External direct products

Definition: If G_1 and G_2 be two groups then the set of all ordered pairs $\{(g_1, g_2) : g_1 \in G_1, g_2 \in G_2\}$ is called the external direct product of G_1 by G_2 . The external direct product of G_1 by G_2 is written as $G_1 \times G_2$.

$$G_1 G_2 = \{g_1 g_2 : g_1 \in G_2, g_2 \in G\},\$$

it should be obviously understood that

$$G_1 \times G_2 \neq G_2 \times G_1$$
 and $G_1 \times G_2 \neq G_1 G_2$.

Theorem 1. If G_1 and G_2 be any two abstract groups then the set $G_1 \times G_2 = \{(g_1, g_2) : g_1 \in G_1, g_2 \in G_2\}$

is a group with respect to the binary operation denoted multiplicatively and defined as

$$(g_1, g_2) (h_1, h_2) = (g_1 h_1, g_2 h_2)$$

where $g_1 h_1 \in G_1$, $g_2 h_2 \in G_2$.

Proof: To prove $G_1 \times G_2$ is a group, we have to satisfy the following properties:

- (i) Closure Property: Since G_1 and G_2 be the two groups.
- $\therefore g_1, h_1 \in G_1 \Rightarrow g_1 h_1 \in G_1,$

and $g_2, h_2 \in G_2 \Rightarrow g_2 h_2 \in G_2$.

- $\therefore (g_1 h_1, g_2 h_2) \in G_1 \times G_2$
- $G_1 \times G_2$ is closed.
- (ii) Associativity:

$$[(g_1, g_2) (h_1, h_2)] (k_1, k_2)$$

$$= (g_1 h_1, g_2 h_2) (k_1, k_2)$$

$$= [(g_1 h_1) k_1, (g_2 h_2) k_2]$$

$$= [g_1 (h_1 k_1), g_2 (h_2 k_2)]$$

$$= (g_1, g_2) (h_1 k_1, h_2 k_2)$$

$$= (g_1, g_2) [(h_1, h_2) (k_1, k_2)].$$

Hence the composition is associative.

(iii) Existence of identity: If e_1 , e_2 be the identities of groups G_1 and G_2 respectively, then

$$(e_1,e_2)\in G_1\times G_2.$$

Also
$$g_1 e_1 = e_1 g_1 = g_1$$

and $g_2 e_2 = e_2 g_2 = g_2$.
Now $(g_1, g_2) (e_1, e_2) = (g_1 e_1, g_2 e_2) = (g_1, g_2)$
and $(e_1, e_2) (g_1, g_2) = (e_1 g_1, e_2 g_2) = (g_1, g_2)$
 $\therefore (e_1, e_2) \in G_1 \times G_2$ is the identity element of $G_1 \times G_2$.
(iv) Existence of inverse: Lot $g_1, g_2 \in G_1$. Then
$$g_1 \in G_1 \Rightarrow g_1^{-1} \in G_1$$

$$g_2 \in G_2 \Rightarrow g_2^{-1} \in G_2$$
and $(g_1^{-1}, g_2^{-1}) \in G_1 \times G_2$
Also $g_1 g_1^{-1} = g_1^{-1} g_1 = e_1$
and $g_2 g_2^{-1} = g_2^{-1} g_2 = e_2$
 $(g_1, g_2) \cdot (g_1^{-1}, g_2^{-1}) = (g_1^{-1}, g_2^{-1}) \cdot (g_1, g_2)$

$$\Rightarrow$$
 $(g_1, g_2)^{-1} = (g_1^{-1}, g_2^{-1}) \in G_1 \times G_2.$

Thus the inverse exists and belongs to the set.

Hence $G_1 \times G_2$ is a group with respect to the binary composition.

= (e_1, e_2) the identity, by (1).

Theorem 2. If G_1 and G_2 are groups then the sub-set $G_1 \times \{e_2\}$ and $\{e_1\} \times G_2$ of $G_1 \times G_2$ are normal sub-groups $G_1 \times G_2$ isomorphic to G_1 and G_2 respectively.

Proof: $G_1 \times \{e_2\}$ is a sub-group of $G_1 \times G_2$.

If H be a sub-group, then $a \in H$, $b \in H \Rightarrow ab^{-1} \in H$.

Choose
$$a = (g_1, e_2), b = (h_1, e_2) \in G_1 \times \{e_2\}, \text{ then}$$

$$ab^{-1} = (g_1, e_2) (h_1, e_2)^{-1} = (g_1, e_2) (h_1^{-1}, e_2^{-1})$$

$$= (g_1, e_2) (h_1^{-1}, e_2) = (g_1 h_1^{-1}, e_2 e_2)$$

$$= (g_1 h_1^{-1}, e_2) \in G_1 \times \{e\}.$$

$$\therefore g_1 \in G_1, h_1 \in G_1 \Rightarrow h_1^{-1} \in G_1,$$

hence $g_1 h_1^{-1} \in G_1$.

This relation shows that $G_1 \times \{e_2\}$ is a sub-group of $G_1 \times G_2$.

Similarly we can prove that $\{e_1\} \times G_2$ is a sub-group of $G_1 \times G_2$. Now we are to prove that $G_1 \times \{e_2\}$ is a normal sub-group of $G_1 \times G_2$.

A sub-group H of G is a normal sub-group of G if for $h \in H$ $x hx^{-1} \in H$, $\forall x \in G$.

Here $H = G_1 \times \{e_2\}$ so that $h \in H$ is $\{g_1, e_2\}$ $G = G_1 \times G_2$ so that $x \in G_1 \times G_2$ is $(p, q), p \in G_1, q \in G_2$.

Now
$$xhx^{-1} = (p, q) (g_1, e_2) (p^{-1}, q^{-1})$$

= $(pg p^{-1}, qe_2 q^{-1})$
= $(pg p^{-1}, e_2) \in G_1 \times \{e_3\}$

because p, g_1 , $p^{-1} \in G_1 \implies pg_1 p^{-1} \in G_1$ and $qe_2 q^{-1} = e_2$. Hence $G_1 \times \{e_2\}$ is a normal sub-group of $G_1 \times G_2$.

Similarly we can prove that $\{e_1\} \times G_2$ is a normal sub-group of $\times G_2$.

Now we are to prove that $G_1 \times \{e_2\}$ is isomorphic to G_1 Let $f: G_1 \times \{e_2\} \to G_1$ defined as $f(g_1, e_2) = g_1.$

Obviously f is one-one as

$$f(g_1, e_2) = f(h_1, e_2) \Rightarrow g_1 = h_1$$

 $\Rightarrow (g_1, e_2) = (h_1, e_2).$

Also f is onto.

Again
$$f[(g_1, e_2) (h_1, e_2)] = f(g_1 h_1, e_2) = g_1 h_1$$

= $f(g_1, e_2) f(h_1, e_2)$

i.e., $f(a, b) = f(a) f(b) \forall a, b \in G_1 \times \{e_2\}.$

Hence $G_1 \times \{e_2\} \cong G_1$.

Similarly, we can prove that $\{e_2\} \times G_2 \equiv G_2$.

Theorem 3. If G_1 and G_2 are groups, then

- (i) $G_1 \times \{e_1\} \cap \{e_2\} \times G_2 = (e_1, e_2),$ i.e. the identity of $G_1 \times G_2$.
- (ii) Every element of $G_1 \times \{e_2\}$ commutes with every lement of $\{e_1\} \times G_2$.
- (iii) Every element of $G_1 \times G_2$ can be uniquely expressed is the product of an element of $G_1 \times \{e_2\}$ by an element of $\{e_1\} \times G_2$.

Proof: (i) Let $x \in A \cap B \Rightarrow x \in A$ and $x \in B$.

 $\therefore x \in G_1 \times \{e_2\} \Rightarrow x \in (g_1, e_2).$

This x can belong to $\{e_1\} \times e_2$ if $g_1 = e_1$, because in this case

$$x = (e_1, e_2) \in \{e_1\} \times G_2.$$

Thus (e_1, e_2) which is identity of group $G_1 \times G_2$ is the only element common to $G_1 \times \{e_2\}$ and $\{e_1\} \times G_2$;

i.e., $G_1 \times \{e_1\} \cap \{e_2\} \times G_2 = (e_1, e_2)$.

(ii) Let us consider
$$a \in G_1 \times \{e_2\}$$
, $\therefore a = (g_1, e_2), g_1 \in G_1$ and $b \in \{e_1\} \times G_2$, $\therefore b = (e_1, g_2), g_2 \in G_2$.

$$\therefore ab = (g_1, e_2) (g_1 e_1, e_2 g_2) = (g_1, g_2)$$
and $ba = (g_1, g_2) (g_1 e_1, g_2) = (g_1, g_2)$

and
$$ba = (e_1, g_2) (g_1, e_2) = (e_1 g_1, g_2 e_2) = (g_1, g_2)$$
.

$$\therefore ab = ba.$$

Thus every element of $G_1 \times \{e_2\}$ commutes with every element $\{e_1\} \times G_2$.

(iii) Suppose (g_1, g_2) be any element of $G_1 \times G_2$, then $(g_1, g_2) = (g_1 e_1, e_2 g_2) = (g_1, e_2) (e_1, g_2)$

= product of an element of $G_1 \times \{e_2\}$

by an element of $\{e_1\} \times G$

This relation shows that there is at least one representation.

If $(g_1, g_2) = (h_1, e_2) (e_1, h_2)$ be another representation,

then
$$(g_1, g_2) = (h_1 e_1, e_2 h_2) = (h_1, h_2)$$

 $\Rightarrow g_1 = h_1 \text{ and } g_2 = h_2.$

Hence the representation is unique